New Triplex Pump Drive Unit Will Power Natural Gas Tankers with LNG in the Future


Highly poisonous heavy oil, a waste product of petroleum refineries, is still blown through the funnels of tankers into the air without being filtered. To reduce the burden on the environment, especially near the coast, while being able to react better to price fluctuations, Qatar wants to arrange the future operation of its entire LNG fleet on a flexible basis.

New Triplex Pump Drive Unit Will Power Natural Gas Tankers with LNG in the Future

The triplex G3M drive unit is a special-order production of the Leonberg-headquartered system builder Lewa. This is a robust, low-maintenance intermediate size specifically designed for long-term operation on natural gas tankers. (Source: Lewa)

The dual-fuel engines that MAN Diesel & Turbo developed for this purpose can optionally be operated with heavy oil or with the liquefied natural gas in the hold. To do this, the boil-off gases are reliquefied under high pressure and injected into the ship s engine. Since ships are always operating and only brought into dry dock for maintenance once in five years, the high-performance pumps used for this purpose must be extremely robust and temperature-resistant. One of the favorites for the supply of these high-performance pumps is Cryostar SAS, a specialist in cryogenic gases. As a partner of this French manufacturer, Lewa GmbH was entrusted with the development of a new drive unit that meets the strict requirements for this application.

Heavy oil is easily obtained, difficult to burn, and can be fed into the engine at low pressure. When the large transport ships of the Q-flex and Q-max LNG fleet were built nine years ago, the decision was therefore made to use slow-running diesel engines, since these are also thermally more efficient than steam turbines and burn less fuel. But it is foreseeable that tankers like those in Qatar will have to convert to other fuels in the future for environmental reasons – at least near the coast. Transport ships with dual-fuel engines like the ones the Emirate wants to use, however, are new territory for everyone involved. Many ship-owners found the technical risk too high, since LNG can be transported safely in the liquid state only at very low temperatures. However, the option of using on-board natural gas as a fuel is also becoming more attractive because engine efficiency is improved in comparison with heavy oil.

Using boil-off gases

The challenge for the ships is that liquefied gas warms up during travel, partly converting back into its gaseous state, meaning that its volume grows by a factor of 600 and the pressure in the storage tanks rises. Venting these boil-off gases harms the environment and reduces the profits of both the producers and the charter companies. Instead, in the Q-flex and Q-max LNG fleet, they are therefore reliquefied. This yielded the idea of making the gas available to operate the ship. Additional equipment will therefore be provided to make the fleet flexible in its choice of fuel. This allows a reaction to the current prices in the specific export country: If gas is trading high there, it s better to sell it than to burn it in the ships’ engine. But in the opposite case, it pays to operate the ship with LNG. But since the gas is extremely explosive, absolutely tight special equipment is needed that can withstand both the temperatures and the high pressures.

Special equipment: High-performance triplex drive unit

With the Triplex pumps that Cryostar and Lewa developed together, both companies are ideally prepared for this new application. The French company is a pioneer in this area and developed the pump heads to meet the requirements for cryogenic liquefied gases. The corresponding G3M triplex drive unit is a special-order production of the Leonberg-headquartered system builder. "Cryostar has the know-how needed to work with cryogenic gases at temperatures ranging from -160 to -200 °C, while we have the robust, low-maintenance drive unit technology needed for long-term operation," explains Thomas Bökenbrink, product manager at Lewa, in reference to the synergy between the two companies. With a rod force of 125 kN, the G3M transforms the rotary movement into an oscillating movement, achieving a maximum power of 160 kW. The development also closes a gap in the manufacturer s portfolio. "This is an intermediate size with a 120 mm stroke length, and we see additional market potential for it," explains Bökenbrink.

The first prototype from Cryostar and Lewa is currently in the testing phase. If the results of these tests and the first trips under load come out positive, the system will be tested on a ship under real conditions. The costs for the retooling are estimated to be about $15 million US per ship, with the total order volume for all 45 ships in the Q-flex and Q-max fleet coming to $700 million.

Source: LEWA GmbH

More articles on this topic

Davao City Moves to Fixed Network Leakage Monitoring

26.02.2024 -

Installation of 320 Ovarro remote correlating loggers has taken place in Davao City in the Philippines, with a major leak detected just days later. The volume of water saved means a large-scale project to construct a new production well can be put on hold. Davao is the largest city on the island of Mindanao and the third largest in the Philippines. With a rapidly increasing population, the city is considered one of the country’s fastest economic growth areas.

Read more

UK Utilities Place Multiple Orders for Hybrid-SAF Technology

16.02.2024 -

Three UK water utilities have agreed orders for the installation of a total of 30 Hybrid-SAF modular biological treatment units from wastewater treatment specialist WCS Environmental Engineering (WCSEE). The contracts with Anglian Water, Scottish Water, and United Utilities demonstrate growing demand for this adaptable wastewater treatment technology that gives utilities greater flexibility in meeting the needs of growing populations and tightening regulatory standards.

Read more

EMW Pump Reduces Maintenance Needs by Three Quarters

12.02.2024 -

After years of changing new casings and propellers every three months to their process pump, a metal industry operator switched their worn-out pump to one of Sulzer’s EMW slurry pumps at their melt shop. The client considered the change a leap forward in their slurry pumping technology since the maintenance interval grew significantly, pump efficiency improved, and the change reduced power consumption.

Read more