Conversion de courbe caractéristique pour différents médias

Avec l’augmentation de la viscosité, cependant, l’influence du nombre de REYNOLDS augmente, de sorte qu’en pratique on suppose que cette approximation est insuffisante à partir d’une viscosité cinématique de l’ordre de 20 mm²/s. Pour corriger cela, des méthodes ont été développées empiriquement pour convertir les courbes caractéristiques enregistrées en milieux de viscosité moyenne et élevée, ce qui dans l’application pratique dans les anciennes versions signifie l’évaluation complexe des diagrammes, mais qui dans les versions actuelles ont été préparés en utilisant des ensembles de formules appropriés. La plus répandue dans le monde est la procédure de l’Hydraulic Institute (USA), qui a été normalisée en tant que ANSI / HI 9.6.7 et ISO / TR 17766. En pratique, la conversion s’effectue aujourd’hui majoritairement à l’aide de programmes informatiques tels que Spaix PumpSelector. La mise en œuvre technique informatique de cette procédure permet la conversion de courbes caractéristiques, l’utilisateur n’ayant qu’à définir les données de transport souhaitées et le support de transport. Dans toutes les méthodes connues, le point de conception de la pompe joue un rôle particulier dans la conversion des courbes caractéristiques. Les conditions suivantes peuvent être précisées pour la validité de la procédure :
  • Pompes centrifuges à roues fermées ou semi-ouvertes
  • Viscosité cinématique comprise entre 1 et 3000 mm²/s
  • Débit au meilleur point de fonctionnement entre 3 et 410 m³/h
  • Hauteur par pas entre 6 et 130 m
  • Production dans des conditions normales d’exploitation
  • Convoyage des fluides NEWTON

viscosité

Dans les fluides NEWTON, les processus d’écoulement laminaire produisent des contraintes de cisaillement et des contraintes normales superposées à la pression, qui sont proportionnelles à la vitesse de déformation, le facteur de proportionnalité étant la viscosité dynamique. La viscosité cinématique est définie comme : La viscosité dépend de la température et de la pression, la dépendance à la pression étant négligeable dans le cas des liquides. Dans le cas de fluides non-NEWTON, la viscosité peut également être dépendante du temps (comportement d’écoulement thixotrope ou rhéopexique). Elle ne peut alors plus être spécifiée comme valeur matérielle. La viscosité d’un fluide a une influence à la fois sur la caractéristique du tuyau et sur la caractéristique de la pompe. Pour les pompes centrifuges, les caractéristiques de la pompe sont converties en pratique avec une viscosité cinématique supérieure à 10 mm²/s.

Fluides non newtoniens

Ceci est caractérisé en ce qu’il n’y a pas de relation linéaire entre la déformation et le tenseur des contraintes et/ou que la viscosité est fonction du temps. Un comportement de flux non newtonien peut, par ex. B. peut être observé dans les milieux suivants :
  • Noir gazeux en vernis à l’huile
  • Suspension de grains dans l’eau
  • Boues d’épuration
  • Fèces
  • Dentifrice
  • Mortier
  • Solutions savonneuses
Exemples: Un comportement thixotrope peut être observé dans de nombreuses peintures et vernis, c’est-à-dire H. la viscosité dépend du temps. Lors d’une agitation à vitesse angulaire constante, une résistance très élevée peut initialement être observée, tandis qu’après un certain temps la viscosité diminue significativement et tend vers une valeur limite inférieure. De nombreuses boues industrielles, par ex. B. Les suspensions de chaux (mortier) et de craie (dentifrice) présentent un comportement viscoplastique. En dessous de la limite d’élasticité (limite d’élasticité), ils se comportent comme des solides et au-delà comme des fluides. Les solutions et les masses fondues de nombreuses substances à haut polymère ainsi que les suspensions avec des particules allongées telles que les caoutchoucs et les solutions de savon sont pseudoplastiques. La viscosité de ces fluides diminue avec l’augmentation du taux de cisaillement. Le comportement inverse (comportement dilatant) peut être trouvé par exemple avec certaines suspensions très concentrées. Ici, la viscosité augmente avec l’augmentation du taux de cisaillement. Les caractéristiques de la pompe et les méthodes classiques de calcul des canalisations supposent une viscosité constante et ne sont pas valables pour les liquides non newtoniens. En fonction du comportement d’écoulement du fluide pompé, elles peuvent au mieux être utilisées comme une approximation. Pour de nombreux milieux non newtoniens, il existe donc des méthodes de calcul ou d’approximation spéciales pour la conception.

Abandon des pompes

Au sens étroit, contrairement aux soufflantes et aux compresseurs, on parle de gaz et de fluides compressibles, dans le cas des pompes pour fluides incompressibles, on parle de pompes à liquide. Cela signifie que le volume du fluide reste presque constant lorsque la pression augmente. En pratique, cela inclut également les mélanges liquides à faible teneur en solides ou en gaz. Lors du transport de liquides, la pression de la pompe est nécessaire pour surmonter la résistance à l’écoulement qui se produit dans le système de tuyauterie, par exemple lors de la circulation d’eau dans un système de chauffage. De plus, en cas de niveaux de liquide différents, la différence de hauteur (Hgeo) doit être surmontée, par exemple lors du pompage pour augmenter le niveau ou lors du remplissage de conteneurs.